Preface

Fruits are botanically similar plant organs in that they are all composed of seeds surrounded by a juicy, colorful, and aromatic ovary which we humans consume as food. Some things we traditionally consider to be “vegetables”, such as tomatoes, cucumbers, corn, and squash, are actually fruits from the botanical point of view. However, fruits vary widely in their shape, size, color, texture, flavor, nutritional properties, potential for extended shelf-life, and ability to withstand different types of processing. While fruits are delicious, nutritious and therefore desirable components of our diet, they suffer from being extremely perishable. For this reason, it is often advantageous to preserve them for longer shelf-life and easier transport to locations distant to the site of production. Processing also transforms the raw material into new, and perhaps improved, product. This book endeavors to serve as a single source of information about the biology of fruit and a description of the various methods used to preserve fruit. The book covers both traditional methods of preservation, such as canning, freezing, and drying, and looks to the future of novel processes such as high pressure, pulsed electric fields, and ohmic processing. The second half of the book focuses on the major processed fruit products and describes the diverse methods that may be used to preserve them.

This book is the second edition of a two-volume book series published in 1996. The first edition separated the biology, principles, and applications into volume one and the major processed products in volume two. When we were asked to consider the editorship of a second edition, we readily agreed because it was clear that an even more detailed and current publication could result given new research and technology. In this second edition, we have introduced new technologies that appear to show promise for the preservation of fruit, such as the production of fresh-cut fruit. There are two brand new chapters addressing these topics. In many cases, we have gone back to the first edition authors and asked for their assistance in updating their chapters. We have added new authors to some chapters, in order to broaden the scope of what was written previously.

For this second edition, we decided to put both of the original volumes into one complete package, allowing the reader to consult one succinct resource for anything he or she wants to know about fruit processing. This book is unique in comparison to others currently available because it covers a greater breadth of topics, and includes detailed descriptions of the processing of over 20 different major fruits. No other book published in the last 25 years (with the exception perhaps of the first edition of this series) comes close to providing the same degree of information on methods for the preservation of fruit.

We begin the book with a description of different fruit classes, and the principles of preserving fruits in their most fresh-like state, that are stored as whole fruit (under either refrigerated or controlled atmosphere conditions) or lightly processed as fresh-cut fruit. Then the chapters progress through methods that involve increasing degrees of process severity. For example, the production of fruit juice involves mild pasteurization treatments in combination with refrigerated storage, and drying may be carried out in the sun. Freezing typically involves a mild blanching step, while ionizing radiation and canning involve treatments that are relatively more intense. A new chapter on novel processing technologies has been added.

The last chapters in Part I of the book describe other topics relevant to the preservation of fruit, e.g., microbiology, food additives, quality assurance, packaging, grades and standards, and residue management. Part II covers more than 22 major processed fruits, including apples, peaches and apricots, sweet and sour cherries, plums, prunes, strawberries, raspberries, cranberries, grapes, oranges and tangerines, grapefruit, lemons and limes, bananas, tropical fruit, coconut, avocados, olives, and nuts.
This book will fill a critical need for students and professors, industry personnel, government agents and others working on the preservation of fruit. It is intended as a resource for both individuals familiar with fruit processing who want to expand their horizons, and as an introduction to the diversity of preservation methods for the inexperienced individual. It has been a joy, and a continuing learning experience, for us to be involved in its creation.

Diane M. Barrett
Laszlo P. Somogyi
Hosahalli Ramaswamy
Acknowledgments

This book is dedicated to the students, scientists, and food processing industry professionals who strive to produce attractive, nutritious processed fruit products for the international consumer. Diane Barrett is indebted to Dr. Laszlo Somogyi for his initiation of this project, and to her husband Pieter and daughter Jodie for their continuing love, support, and understanding.
Editors

Diane M. Barrett graduated with a B.S. in Food Science & Technology from the University of California, Davis, where she is currently on faculty. She received her M.S. in Food Chemistry from the University of Wisconsin, Madison and her Ph.D. in Food Biochemistry from Cornell University, Ithaca, NY. After acquiring her M.S., Dr. Barrett spent four years doing food science research and education in Indonesia as a consultant with the World Bank and U.S. Agency for International Development.

At U.C. Davis, Dr. Barrett conducts extension courses for the fruit and vegetable processing industry and carries out applied research. Extension courses include the Better Process Control School, Freezing Technology Workshop, Juice Processing Course, Tomato Processing School, Fresh-Cut Products Workshop and Aseptic Processing & Packaging Workshop. Her research focuses on the effects of raw materials and processing conditions on the quality of fruit and vegetable products. She is particularly interested in the relationship between endogenous enzymes and the color, texture, flavor, and nutritional quality of fruits and vegetables. When she is not harvesting tomatoes or processing fruit, Dr. Barrett enjoys swimming, kayaking, and traveling with her family.

Laszlo P. Somogyi specializes in the technical, regulatory, and nutritional aspects of food processing operations, techno-economic studies of food ingredients, and post-harvest handling of fruits. During his 40 years experience in working for and consultation to food industry firms he worked at Hunt-Wesson Foods, Vacu-Dry Company, Finn-Cal Products, and SRI International. Dr. Somogyi has published over 40 technical papers and has contributed to a number of textbooks on subjects of food ingredients, additives, food and beverage processing technologies, fruit quality, and food irradiation, and has been the lead author for SRI’s Chemical Economics Handbook and Specialty Chemical Economics Update, multiclient reports dealing with food additives and flavors and fragrances. Since his retirement from SRI in 1998 he has been participating in U.S. Agency for International Development programs in Egypt and Lebanon and consulting for several food ingredient manufacturers.

Dr. Somogyi received a B.S. degree from the University of Agricultural Sciences in Budapest, Hungary, holds M.S. and Ph.D. degrees from Rutgers University; and was a post-doctoral fellow at the University of California, Davis. He was elected as Fellow of the Institute of Food Technologists, and is a member of the American Association of Cereal Chemists, and the American Oil Chemist’s Society.

Dr. Hosahalli Ramaswamy is a Professor in the Department of Food Science at McGill University in Montreal, Canada with teaching and research responsibilities in the areas of Food Processing and Post Harvest Technology. He obtained his M.Sc. and Ph.D. in Food Science from the University of British Columbia, Vancouver. Dr. Ramaswamy’s primary research area is thermal and non-thermal processing. In his research activities, he has explored the use of conventional thermal processing as well as thin profile, rotational, microwave, RF, ohmic and aseptic processing. In the area of non-thermal processing, his research focus has been application of high pressure processing for food systems. He has also carried out extensive research in the area of computer modeling, rheology and use of artificial neural networks for process characterization and optimization. Dr. Ramaswamy is a professional member of several organizations such as IFT, CIFST, IFTPS, ASAE and CSAE. He has served as Chair of the Heat Penetration Committee of the Institute for Thermal Processing Specialists, Chair of the Radiation Committee of ASAE, and has been serving as an
associate editor of *Transactions of ASAE* (ASAE) and *Journal of Food Science*. He is also on the editorial board of *Food Research International*, *Food Science and Technology Journal*, and *Journal of Food Process Engineering*. He has published over 175 refereed scientific papers and supervised over 30 graduate students. He has received the 1999 W.J. Eva Award by the Canadian Institute of Food Science and Technology, the 2002 John Clark Award of the Canadian Society of Agricultural Engineering, and is a 2002 Fellow of the Association of Food Scientists and Technologists (India).
Contributors

P. Alvo (Deceased)
McGill University
St. Anne Bellevue, Quebec, Canada

Robert A. Baker
USDA-ARS
Winter Haven, Florida

Diane M. Barrett
University of California
Davis, California

Norman Berry
AVP Baker Ltd.
Crawley, West Sussex, U.K.

Robert Braddock
University of Florida
Lake Alfred, Florida

Cuiren Chen
McGill University–MacDonald Campus
St. Anne de Bellevue, Quebec, Canada

Sonia Y. de Leon
University of the Philippines
Quezon City, Philippines

Louise Deschênes
Agriculture & Agri-Food Canada
St. Hyacinthe, Quebec, Canada

Charlotte L. Deuel
Medical Ambassadors International
Modesto, California

Milagros I. Dolores
Quezon City, Philippines

Elisabeth Garcia
University of California
Davis, California

Yvan Gariépy
McGill University
St. Anne de Bellevue, Quebec, Canada

Albrecht Höhn
AB Enzymes GmbH
Darmstadt, Germany

Y.H. Hui
American Food & Nutrition Center
West Sacramento, California

Charles Huussoll
USDA-WRRC
Albany, California

Adel A. Kader
University of California
Davis, California

Dan Kimball
Kimball Consulting
Lindsay, California

Azriel Kurlaender
Rak Consulting
Ventura, California

Bor S. Luh
Formerly of the University of California
Davis, California

Jatal D. Mannapperuma
University of California
Davis, California

Michele Marcotte
Agriculture and Agri-Food Canada
St. Hyacinthe, Quebec, Canada

N.R. Markarian
CRDH, Agriculture & Agri-Food Canada
St. Jean-Sur-Richelieu, Quebec, Canada
Marvin H. Martin
Madera, California

Mark R. McLellan
Texas A&M University
College Station, Texas

Justin R. Morris
University of Arkansas
Fayetteville, Arkansas

Arun S. Mujumdar
National University of Singapore
Singapore

Brendan A. Niemira
USDA-ARS
Wyndmoor, Pennsylvania

Francois Nolle
Valley Research, Inc.
South Bend, Indiana

Olga I. Padilla-Zakour
Cornell University
Geneva, New York

Mickey E. Parish
University of Florida
Lake Alfred, Florida

Thomas J. Payne
San Mateo, California

Anne D. Perera
Crop & Food Research Institute of New Zealand
Palmerston North, New Zealand

Conrad O. Perera
National University of Singapore
Singapore

Anne Plotto
USDA-ARS
Winter Haven, Florida

G.S.V. Raghavan
McGill University
St. Anne de Bellevue, Quebec, Canada

Hosahalli S. Ramaswamy
McGill University
St. Anne de Bellevue, Quebec, Canada

Cristina Ratti
Laval University
St. Foy, Quebec, Canada

David S. Reid
University of California–Davis
Davis, California

William H. Root
Pacific International Technology
Walnut Creek, California

Ralph Scorza
USDA-ARS
Kearneysville, West Virginia

James P. Smith
McGill University
St. Anne de Bellevue, Quebec, Canada

Pedro Solé
Management Consultant
Hayward, California

Laszlo P. Somogyi
Kensington, California

Don F. Splittstoesser (Deceased)
Formerly of Cornell University
Geneva, New York

Ken Stewart
GusmerCellulo
Hillsboro, Oregon

R. Keith Striegler
University of Arkansas
Fayetteville, Arkansas

Daqing Sun
Valley Research Inc.
South Bend, Indiana

Clement Vigneault
CRDH, Agriculture & Agri-Food Canada
St. Jean-Sur-Richelieu, Quebec, Canada
Yu-Ping Wei
Chung-Hua University
Hsinchu, Taiwan

Ming-Chang Wu
National Pingtung University
Pingtung, Taiwan

Randy W. Worobo
Cornell University
Geneva, New York

Devon Zagory
Davis Fresh Technologies, LLC
Davis, California

James Swi-Bea Wu
National Taiwan University
Taipei, Taiwan
Contents

PART I Biology, Principles, and Applications

Chapter 1 Classification, Composition of Fruits, and Postharvest Maintenance of Quality
Adel A. Kader and Diane M. Barrett

Chapter 2 Refrigerated and Controlled/Modified Atmosphere Storage
G.S.V. Raghavan, Clement Vigneault, Yvan Gariépy, N.R. Markarian, and P. Alvo

Chapter 3 Fresh-Cut Fruits
Elisabeth Garcia and Diane M. Barrett

Chapter 4 Juice Processing
Mark R. McLellan and Olga I. Padilla-Zakour

Chapter 5 Enzymes in the Fruit Juice and Wine Industry
Alberecht Höhn, Daqing Sun, and Francois Nolle

Chapter 6 Fruit Preserves and Jams
Robert A. Baker, Norman Berry, Y.H. Hui, and Diane M. Barrett

Chapter 7 Drying of Fruits
Cristina Ratti and Arun S. Mujumdar

Chapter 8 Fruit Freezing
David S. Reid and Diane M. Barrett

Chapter 9 Thermal Processing of Fruits
Hosahalli S. Ramaswamy

Chapter 10 Novel Processing Technologies for Food Preservation
Hosahalli S. Ramaswamy, Cuiren Chen, and Michele Marcotte

Chapter 11 Ionizing Radiation Processing of Fruits and Fruit Products
Brendan A. Niemira and Louise Deschênes
Chapter 12 Microbiology of Fruit Products
 Randy W. Worobo and Don F. Splittstoesser

Chapter 13 Direct Food Additives in Fruit Processing
 Laszlo P. Somogyi

Chapter 14 Quality Assurance, Quality Control, Inspection, and Sanitation
 Conrad O. Perera and Anne D. Perera

Chapter 15 Packaging of Fruits and Vegetables
 James P. Smith, Devon Zagory, and Hosahalli S. Ramaswamy

Chapter 16 Grades, Standards, and Food Labeling
 Y.H. Hui and Charles Huxsoll

Chapter 17 Residual Management in Fruit Processing Plants
 Jatal D. Mannapperuma

PART II Major Processed Products

Chapter 18 Apples and Apple Processing
 William H. Root and Diane M. Barrett

Chapter 19 Peach and Apricot
 Ralph Scorza

Chapter 20 Sweet Cherry and Sour Cherry Processing
 Mark R. McLellan and Olga I. Padilla-Zakour

Chapter 21 Plums and Prunes
 Laszlo P. Somogyi

Chapter 22 Strawberries and Raspberries
 Charlotte L. Deuel and Anne Plotto

Chapter 23 Processing of Cranberry, Blueberry, Currant, and Gooseberry
 Ken Stewart
Chapter 24 Grape Juice: Factors That Influence Quality, Processing Technology, and Economics
 Justin R. Morris and R. Keith Striegler

Chapter 25 Oranges and Tangerines
 Dan Kimball, Mickey E. Parish, and Robert Braddock

Chapter 26 Grapefruits, Lemons, and Limes
 Dan Kimball, Robert Braddock, and Mickey Parish

Chapter 27 Bananas (Processed)
 Pedro Solé

Chapter 28 Tropical Fruits
 James Swi-Bea Wu, Ming-Chang Wu, and Yu-Ping Wei

Chapter 29 Coconut
 Sonia Y. de Leon and Milagros I. Delores

Chapter 30 Avocados
 Azriel Kurlaender

Chapter 31 Olives
 Elisabeth L. Garcia, Bor S. Luh, and Marvin H. Martin

Chapter 32 Nuts
 Thomas J. Payne