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ABSTRACT: Two portable infrared sensors were evaluated for the rapid determination of quality parameters in processing
tomatoes. A total of 370 hot-break juices were prepared from ∼40 processing tomato varieties grown in 5 California counties.
The levels of sugars, acids, soluble solids, titratable acidity, and pH in these juices were determined using standard reference
methods. Juices were processed, filtered, and directly applied to the FT-IR crystal (15−40 μL) to obtain spectra. Partial least-
squares regression (PLSR) was used to generate correlation models, both calibration and validation. The PLS validation models
showed good ability (Rval > 0.80; <10% SEP) in estimating the sugars, acids, and especially soluble solids in tomato for both the
transmission DialPath portable system and benchtop unit using triple-bounce attenuated total reflectance (ATR). The IR
portable unit may provide the tomato processing industry with an efficient method for in-plant, high throughput quantification of
quality parameters in tomatoes.
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■ INTRODUCTION

Tomato (Lycopersicon esculentum) is the second most important
vegetable crop next to potato with production occurring in 144
countries.1 Fresh and processed tomatoes are one of the mostly
widely produced and consumed vegetables in the U.S. and
generate annual an revenue of approximately $2 billion in farm
cash receipts.2

In the U.S., the state of California currently produces about
12 million tons of processing tomatoes annually, accounting for
more than 90% of the U.S. crop and about 40% of the
processing tomato production worldwide.3 Processing tomatoes
are used to produce a variety of products, including whole
peeled fruit and diced tomatoes, as well as various juices and
purees. The largest portion of this crop is thermally processed
and concentrated into tomato paste. The most important
quality attributes in processing tomatoes are soluble solids, pH,
titratable acidity, viscosity, and color.4 Tomato fruit composi-
tion is approximately 93% water and 7% solids. Total solids are
further classified according to their water solubility as soluble
and insoluble solids.5 Approximately half of the total solids are
reducing sugars, with slightly more fructose than glucose. The
remaining solids consist of organic acids (citric and malic),
amino acids, proteins, lipids, minerals, pectic substances,
cellulose, and hemicellulose.6

Soluble solids are a key parameter in tomato paste
production. Tomato paste is produced and sold based on its
soluble solids content; thus, soluble solids dictate the factory
yield. Higher soluble solids in the incoming fruit means that
fewer tons of tomatoes will be needed to produce a given
amount of paste.7 Furthermore, water removal during

evaporation of juice to paste is an energy intensive process.
Producing paste from fruit with high levels of soluble solids is
less expensive since less water needs to be removed to obtain
the desired soluble solids content.8

A second key parameter in paste production is pH, which
plays a vital part in microbiological safety and food spoilage.
Tomatoes are high-acid foods and thus require less drastic
thermal treatments than foods classified as low-acid (pH > 4.6)
for the destruction of spoilage microorganisms to ensure food
safety.9 Generally, the pH of tomatoes has been reported to
range from 3.9 to 4.9 or in standard cultivars from 4.0 to 4.7;10

hence, the USDA standards of identity allow organic acids to be
added to lower the pH when needed during the processing of
high-acid foods.6 The pH of the tomato is determined by its
organic acid content with citric acid being the most abundant.
Sugars and organic acids are responsible for the sweetness

and tartness, and are major factors affecting flavor accept-
ability.11−14 The development of processing tomato varieties
with altered compositions requires the efficient and accurate
evaluation of thousands of tomato breeding lines.15 Traditional
methods for sugar and acid determination include the use of
enzymatic kits and chromatography.16 Chromatographic
methods are typically accurate and allow for the determination
of multiple juice components from a single sample. Limitations
include time-consuming sample preparation, use and disposal
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of hazardous solvents, low sample through-put, and a high skill-
set for the testing personnel. Enzyme based methods are rapid,
require little sample preparation, and allow for a high sample
throughput.17 However, by their nature these tests can only
determine a single juice component at a time. If a complete
profile of the juice is desired, multiple tests will need to be run,
greatly increasing the time and expense involved with these
methods. Infrared (IR) spectroscopy presents an ideal
alternative for assessing processing tomatoes as it is a simple,
time- and cost-efficient technique that can potentially provide
information on many juice components from a single
measurement. It has already shown promise in analyzing
other food and agricultural products.18 The mid-IR region
(4000−400 cm−1) produces absorption bands for most
functional groups, which allows for a direct correlation between
specific chemical parameters of interest.19 Fourier-transform
infrared (FT-IR) techniques combined with chemometrics offer
tomato processors and breeders powerful tools for the rapid
assessment of tomato quality attributes. Portable IR units
would enable the food manufacturer to quickly assess the
quality of the incoming raw material, the quality of their
product, and allow for timely corrective measures during
manufacture. Portable systems are simple to use and require
minimal or no sample preparation, thus reducing assay time
and helping to streamline the analytical procedure so that it is
more applicable to higher sample throughput.
The objective of the present research was to develop a

simple, quick, and reliable methodology for the determination
of processing tomato quality parameters (°Brix, pH, titratable
acidity, fructose and glucose, and citric and glutamic acids).
Additionally, we evaluated the performance of two novel
portable infrared units against benchtop IR spectrometers.

■ MATERIALS AND METHODS
Tomato Plant Material. A total of 40 processing tomato varieties

were obtained from five counties (Fresno, Kern, Merced, San Joaquin,
and Yolo) located in central California during the 2010 and 2011
growing seasons. The counties provided one to three replicates of each
variety totaling 370 samples. In each California county, tomatoes were
planted by cooperating commercial growers as part of a long-term
program of evaluation of new tomato cultivars under the coordination
of the Department of Food Science and Technology and the
Cooperative Extension Program at the University of California
Davis.20 All tomatoes were manually harvested at the commercial red-
ripe stage during midseason (mid-August through early October).
Tomatoes were selected from the middle of the plant, avoiding the top
and bottom set of tomatoes.
Sample Preparation. All tomatoes were washed, towel dried, and

sorted for defects. A “microwave break” method, developed by the
Department of Food Science and Technology at University of
CaliforniaDavis21 to simulate a hot break process, was used to
prepare tomato juice samples as described previously.22 The juice
samples were immediately evaluated for soluble solids, pH, and
titratable acidity (% citric). The remaining portion of the blended
tomato juices were stored in 15 mL Fisherbrand plastic centrifuge
tubes (Waltham, MA) at −40 °F for later chemical and FTIR analysis.
During all analytical stages, special care was taken to protect samples
from unnecessary light and exposure to heat.
Reference Analysis: Sugars, Acids, and Soluble Solids.

Enzymatic Determination of Sugars and Acids. Sugars and acids
were quantified using an enzymatic procedure as previously
described.17 Analysis was done using enzyme reagent kits (R-
Biopharm, Marshall, MI) for use in 96-well microplates with a final
assay volume of 200 μL. The procedure followed kit instructions
except that the volumes of water used to prepare the reagents were
modified so that the final reagent concentrations were the same for the

200 μL volume used here as for the 3 mL procedure described in the
kit instructions. Tomato juice samples were clarified by centrifuging
for 5 min at 16,100g. Aliquots of the supernatants were diluted 100-
fold with water for acid analysis and 1000-fold with water for sugar
analysis. To perform the assay, 100 μL aliquots of the diluted
supernatants were mixed with 100 μL of the modified kit reagents in
the microplate wells. Absorbance at 340 nm was measured, then 4 μL
of the appropriate enzyme suspension was added and the absorbance
at 340 nm monitored until a stable new reading was obtained.
Concentrations of sugars and acids were calculated from the
absorbance differences at 340 nm and the extinction coefficient for
NADPH of 6,300 M−1cm−1. Standard solutions provided with the kits
were used to verify the accuracy of the method.

pH and Titratable Acidity. Pulped juice tomato samples were
evaluated for titratable acidity using titration with NaOH.23 The
remaining juice was then deaerated and the temperature was adjusted
to 25 °C before pH determination.

Soluble Solids (°Brix) Determination. For estimation of soluble
solids content, 1.5 mL of tomato puree was centrifuged at 10,000 rpm
(15 min, 25 °C), and the supernatant was filtered through Whatman
nonsterile syringe filters (0.45 μm). The filtered tomato serum (40
μL) was measured using the Leica Mark II Plus Abbe Refractometer
Model 10494 (Leica, Buffalo, NY).

Measurements were taken once for each sample, and 70% ethanol
was used to clean in between samples. The refraction index was
expressed as % soluble solids in °Brix.

Infrared Spectroscopy Analysis. Samples were divided into
calibration and validation sets to compare the performance of the
regression models developed by collecting mid-infrared (MIR) spectra
with different systems. A total of 210 samples were analyzed from the
2010 growing season and an additional 160 samples from the 2011
growing season. Two thirds of the samples (245 tomato juices) were
used for calibration models, and the remaining one-third (125 tomato
juices) was used for prediction models. Samples were randomly
selected from each county for inclusion in calibration and validation
models using a random sampling approach (Matlab 6.1).

Aliquots (1.5 mL) from each thawed, blended tomato juice sample
were centrifuged at 10,000 rpm for 15 min at 25 °C. The supernatant
was filtered through Whatman nonsterile syringe filters (0.45 μm) and
collected in 1.5 mL Fisherbrand centrifuge tubes. Spectral data from all
tomato juice samples were collected using 3 spectrometers: a benchtop
system equipped with a single-bounce and triple-bounce zinc selenide
(ZnSe) attenuated total reflectance (ATR) accessories, a hand-held
(FlexScan, Agilent, Santa Clara, CA) unit equipped with a single-
bounce diamond ATR, and a Cary 630 portable IR spectrometer using
a ZnSe dial-path transmittance accessory.

The filtered juice (15−50 μL) was applied directly at the surface of
the crystals (ATR or ZnSe transmittance) for spectral acquisition in
less than 2 min. Duplicate, independent measurements were taken on
each sample, and background spectra were acquired every sample for
the hand-held and portable units or every 5 samples for the benchtop
model to account for environmental variations. In-between measure-
ments, the crystal was carefully cleaned with 70% ethanol and dried
with Kimwipe tissue (Kimberly-Clark Corp. LLC, Roswell, GA).

The benchtop model used was an Excalibur Series 3100 Fourier-
Transform infrared spectrometer (Agilent Technologies Inc., Santa
Clara, CA) with a potassium bromide beam splitter and a deuterated
triglycine sulfate (DTGS) detector, operating at 4 cm−1 resolution. A
horizontal ATR sampling accessory, coupled with a ZnSe crystal plate
with a refractive index of 2.5, allowed triple reflection within the
sample at an incidence angle of 45° for the highest infrared sample
throughput (Pike Technologies, Madison, WI). An additional ZnSe
crystal was obtained for single-bounce benchtop analysis. The samples
were scanned at room temperature, and mid-infrared spectra were
collected at wavenumbers from 4000 to 700 cm−1. Subsequently, the
sample spectra were corrected against the background spectrum of air.
Interferograms of 32 scans were co-added followed by Beer-Norton
apodization. Spectra were displayed in terms of absorbance and viewed
with Win-IR Pro Software (Agilent Technologies Inc., Santa Clara,
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CA). The instrument was constantly purged with CO2-free dry air
from a CO2RP140 dryer (Dominick Hunter, Charlotte, NC).
The portable Cary 630 FTIR unit (Agilent Technologies Inc., Santa

Clara, CA) used a 30 μm transmission sampling accessory with a
temperature-stabilized DTGS detector, ZnSe beam splitter, operated at
a spectral resolution of 4 cm−1, and the mid-infrared spectral range of
4000 − 700 cm−1 was collected. A total of 64 scans were co-added to
improve the signal-to-noise ratio.
The hand-held FlexScan FTIR unit (Agilent Technologies Inc.,

Santa Clara, CA) used a single-bounce diamond ATR crystal with a
ZnSe beam splitter and a temperature-stabilized DTGS detector
operating at 4 cm−1 resolution. The samples were scanned at room
temperature using the 4000−700 cm−1 region. Interferograms of 64
scans were co-added to improve the signal-to-noise ratio.
Multivariate Analysis: Partial Least Squares Regression

(PLSR). PLSR, a pattern recognition technique, was used to analyze
the complex data sets and to generate predictive models to estimate
the different tomato juice quality parameters. PLSR is a bilinear
regression method that compresses a large number of variables into a
few much smaller number of latent factors that are linear combinations
of the spectral frequencies (X) and use these factors to ascertain for
the analyte’s concentration (Y), explaining much of the covariance of
X and Y.24 This technique has the potential to estimate the component
concentration, as well as the chemical properties of the spectra.25 The
degree of competence and versatility of this analytical approach offer a
more information-rich data set of reduced dimensionality and

eliminates data noise, which results in more accurate and reproducible
calibration models.26

Spectral data were exported from the spectrometers as GRAMS.spc
files and imported to the multivariate statistical program Pirouette for
Windows Chemometrics Modeling Software, version 4.0 (Infometrix,
Inc., Bothell, WA). These were then analyzed by PLSR that was cross-
validated using a leave-one-out approach to generate calibration
models and subsequently transformed using the multiplicative scatter
correction (MSC) function. The calibration models correlated the
spectra against the concentration of each tomato analyte (Brix, pH,
titratable acids, glucose, fructose, and citric and glutamic acids).
Performance of these models was evaluated in terms of outlier
diagnostics, standard error of cross-validation (SECV), correlation
coefficient (R2), and number of factors.

Graphic evaluation of the calibration models was done to guarantee
an arbitrary distribution of residuals. Residuals and leverage were used
for the evaluation of outliers. An outlier was indicated either by a large
residual or an unusual residual pattern. Conversely, leverage was used
to determine its potential contribution to the estimated calibration
model. Hence, any observation with atypical and large residual or
leverage was reanalyzed and eliminated if it was considered a
substantial outlier; thereafter, the model was recalculated. Standard
error of cross-validation (SECV) is an approximation of the standard
error of prediction, that is, the weight of an anticipated error when
independent samples are predicted using the model.27 External
validation was performed on the prediction sample set to assess the
ability of the calibration model to withstand unknown variability. The

Table 1. Reference Method Results of Quality Parameters in Tomato Samples from the 2010 and 2011 Growing Seasons

county
number of
varieties

glucose
(g/L)

fructose
(g/L)

citric acid
(g/L)

glutamic acid
(g/L) pHa

soluble solids
(°Brix)

titratable aciditya (%
citric)

Kern 42 range 13.2−21.0 13.8−20.6 2.20−3.86 1.41−2.57 4.31−4.76 5.1−6.7 0.171−0.302
average ±
SD

15.0 ± 2.2 15.4 ± 2.3 3.03 ± 0.40 2.19 ± 0.49 4.59 ± 0.12 5.41 ± 0.73 0.253 ± 0.034

Yolo 40 range 13.2−21.4 13.3−20.1 1.97−3.76 1.00−2.50 4.22−4.77 3.5−5.4 0.185−0.348
average ±
SD

16.3 ± 2.5 16.6 ± 2.3 2.64 ± 0.51 1.84 ± 0.45 4.51 ± 0.10 4.65 ± 0.46 0.253 ± 0.038

Merced 42 range 12.1−19.4 12.6−20.0 1.52−3.59 1.92−3.08 4.34−4.73 5.0−6.4 0.179−0.335
average ±
SD

16.0 ± 2.2 16.6 ± 2.4 2.34 ± 0.38 2.26 ± 0.35 4.55 ± 0.10 5.58 ± 0.34 0.232 ± 0.032

San
Joaquin

38 range 10.0−18.5 11.0−18.1 1.29−2.53 1.54−2.61 4.39−4.87 3.2−5.4 0.152−0.283
average ±
SD

13.7 ± 1.7 14.6 ± 1.7 1.98 ± 0.30 2.19 ± 0.33 4.57 ± 0.10 4.35 ± 0.49 0.218 ± 0.031

Fresno 39 range 12.3−18.6 12.8−20.0 1.98−3.39 1.68−3.21 4.30−4.66 5.0−6.2 0.184−0.338
average ±
SD

17.3 ± 2.4 17.7 ± 2.4 2.68 ± 0.36 2.21 ± 0.43 4.57 ± 0.14 5.59 ± 0.34 0.265 ± 0.037

aTA and pH results were unreliable for samples from the 2011 growing season; therefore, results display 2010 samples only.

Figure 1. Infrared absorption spectrum of the tomato samples on benchtop (single-bounce ATR in pink and triple-bounce ATR in purple), FlexScan
hand-held (blue), and Cary portable (green) spectrometer systems.
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correlation coefficient (R2) is a statistical measure that allows us to
determine the amount of variation in the data that is adequately
modeled by the calibration equation as a fraction of the total variation.
An R2 of 1.0 indicates that the calibration model represents 100% of
the variance within the data and is illustrated by a regression line
perfectly fitting the data.27 The calibration model that generated an
excellent combination of the minimum SECV, higher R2, and
optimized numbers of latent factors was selected the best for spectral
data set on each tomato parameter.

■ RESULTS AND DISCUSSION

Quality Parameters of Tomato Fruit. The large number
of tomato varieties (∼40) grown in 5 different California
counties resulted in wide ranges of compositional levels (Table
1). Overall, values ranged from 10.0 to 21.4 g/L (glucose),
11.0−20.6 g/L (fructose), 1.29−3.86 g/L (citric acid), 1.00−
3.21 g/L (glutamic acid), 3.2−6.7 (°Brix), 4.22−4.87 (pH), and
0.152−0.348 (% citric) (Table 1). Similar contents were
reported in other processing tomato juice studies.3,28,22 The
data also is consistent with findings from Daood29 where 0.90−
1.62 g/100g for glucose, 1.25−1.70 g/100g for fructose, and
6.04 mg/g citric acid nutrient levels in tomato fruits were
reported. In general, the values found in this study are within
those reported in the literature taking into account that nutrient
levels may be affected by variety, maturity, temperature, and soil
nutrients among others.30

Calibration Model Development Using Tomato Juice
Samples from the 2010 Growing Season. Tomato samples

from the 2010 growing season were screened on the benchtop
(single-bounce and triple-bounce ATR accessories), FlexScan
hand-held, and Cary portable spectrometer systems. Typical
ATR and transmission spectra obtained from tomato juice
supernatants (no pulp) showed strong water absorption bands
(1582−1692 and 2971−3627 cm−1). As seen in Figure 1, the
ATR triple-bounce accessory used on the benchtop spectrom-
eter provided increased absorbance intensity through multiple
interactions between the incident IR radiation and the sample
which improved the signal resolution of low concentration
components.31 Important bands in the fingerprint region
(1500−900 cm−1) were associated with C−O and C−C
stretching modes (900−1153 cm−1) and O−C−H, C−C−H,
and C−O−H bending vibrational modes (1474−1199
cm−1).32,33 The Cary portable system generated higher
absorption intensity compared to the single- and triple-bounce
ZnSe ATR benchtop system (Figure 1). The effective path
length (EPL) obtained by using the multireflection ATR
accessory was ∼13.08 μm,31 a 3-fold increase from a single-
bounce ATR accessory (EPL = 4.6 μm), while the DialPath
transmittance accessory for the Cary 630 system provided an
EPL of 30 μm for data acquisition. The saturated signals
between 3800 and 2800 cm−1 are due to the strong infrared
absorptivity of water (104.4 M−1 cm−1) and are unfortunately
void of any information.34

The cross-validated leave-one-out PLSR model performance
statistics for the 2010 tomato samples on the benchtop,

Table 2. Performance Statistics for PLS Regression Models Generated for Quality Parameters in Processing Tomatoes from the
2010 Growing Season on FT-IR Systemsa

analyte technique N range of concn factors SECVb Rcv
c

glucose (g/L) benchtop: 3 bounced 205 10.0−21.4 4 1.13 0.76
benchtop: 1 bounced 200 4 1.16 0.77
portable: Carye 195 4 1.12 0.80
hand-held: FlexScane 180 5 1.20 0.76

fructose (g/L) benchtop: 3 bounced 205 11.0−20.6 3 1.11 0.73
benchtop: 1 bounced 190 4 1.08 0.73
portable: Carye 200 4 1.11 0.73
hand-held: FlexScane 190 5 1.17 0.73

citric acid (g/L) benchtop: 3 bounced 200 1.29−3.86 9 0.21 0.88
benchtop: 1 bounced 190 8 0.23 0.89
portable: Carye 210 7 0.25 0.88
hand-held: FlexScane 190 5 0.32 0.80

glutamic acid (g/L) benchtop: 3 bouncee 205 1.00−3.21 8 0.19 0.90
benchtop: 1 bounced 190 9 0.19 0.88
portable: Carye 195 9 0.15 0.93
hand-held: FlexScane 170 5 0.21 0.84

titratable acidity (% citric) benchtop: 3 bounced 205 0.152−0.348 9 0.014 0.92
benchtop: 1 bouncee 190 10 0.015 0.93
portable: Carye 205 9 0.018 0.88
hand-held: FlexScane 180 6 0.025 0.74

pH benchtop: 3 bounced 200 4.22−4.87 8 0.04 0.82
benchtop: 1 bouncee 190 9 0.04 0.83
portable: Carye 195 9 0.05 0.81
hand-held: FlexScane 160 6 0.05 0.61

°Brix benchtop: 3 bouncee 200 4.2−6.7 8 0.17 0.96
benchtop: 1 bounced 190 8 0.20 0.96
portable: Carye 200 7 0.19 0.96
hand-held: FlexScane 170 5 0.25 0.93

aNote: Models were generated using multiple specular component transformation. Smoothing was used with FlexScan and benchtop (single
bounce) systems to reduce noise interferences. bSECV: standard error of cross-validation. cRcv: correlation coefficient of cross-validation. dSpectral
region of 1800−900 cm−1 was included. eSpectral region of 1500−900 cm−1 was included.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf304968f | J. Agric. Food Chem. XXXX, XXX, XXX−XXXD



Figure 2. Generated PLSR calibration models for citric acid on the (A) single-bounce ATR benchtop, (B) triple-bounce ATR benchtop, (C)
portable Cary, and (D) hand-held FlexScan.

Figure 3. PLSR correlation plots for estimating quality parameters in processing tomatoes using a portable Cary 630 unit equipped with a
transmittance Dialpath accessory.
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portable, and hand-held FTIR systems are displayed in Table 2.
By selecting the optimum number of latent variables (factors)
that minimized the standard error of cross-validation (SECV)
of the model, ∼95−99% of the cumulative variance for the
systems was explained. The number of factors (3−10) used in
the models reduced spectral noise and potential overfitting,
which could impair its ability to estimate composition in
unknown samples.
In general, the single- and triple-bounce ATR accessories

used in the benchtop and portable Cary systems performed
similarly to each other in terms of the correlation coefficient of
cross-validation (Rcv) and SECV (Table 2). The SECV for the
quality parameters on the benchtop and Cary portable systems
were ∼1.1 g/L (sugars), 0.23 g/L (citric acid), 0.20 g/L
(glutamic acid), 0.16% citric (TA), 0.05 pH, and 0.18 °Brix
(soluble solids) (Table 2). The FlexScan hand-held system
showed slightly inferior performance to the other systems as
seen by the lower R-value and higher SECV for nearly all
quality parameters (Table 2).
Overall, a high number of outliers were identified from the

FlexScan unit based on leverage and studentized residual
analysis (Table 2). Interferences from the water regions’ strong
absorption bands (1582−1692 cm−1 and 2971−1395 cm−1) are
likely reducing the signal-to-noise ratio in the FlexScan, thus
masking the signal for the bending (O−C−H, C−C−H, and
C−O−H) vibrational modes in the 1500−1200 cm−1 region.
The estimated quality parameter contents measured by the
ATR-IR or transmission spectroscopy showed coefficient of
determination (Rcv) ranging from 0.61 to 0.96 with reference
values (Table 2).
Figure 2 shows the PLSR models generated for citric acid on

the single and triple-bounce ATR benchtop, the portable Cary
630 system with DialPath transmission accessory, and the hand-
held FlexScan diamond ATR system. Figure 3D illustrates that
higher data scattering, or a higher SECV (Table 2), was
observed from the FlexScan hand-held as the data points were
more scattered along the regression line. The Cary 630 portable
system provided much stronger correlation as seen in the
tighter predictions or lower SECV (Figure 2B). These models
are helpful visualizations of the relationship between measured
quality parameters and predictive capability of the infrared
systems.
Recalibration Model Development Using Tomato

Juice Samples from the 2010 and 2011 Growing Season
by Selected FT-IR Systems. On the basis of the performance

of PLSR models to estimate quality parameters in tomato juices
from the 2010 growing season, the triple-bounce ATR
containing benchtop and portable Cary FT-IR systems were
selected to develop a validated model to rapidly assess
processing tomatoes. The benchtop acted as control technol-
ogy, and the portable Cary 630 unit was compared to the
performance of the benchtop. PLSR calibration models were
built using two-thirds of the processing tomato samples from
the 2010 and 2011 growing seasons. The included spectral
range for the Cary portable FT-IR was 1500−900 cm−1 to
exclude saturated water absorption signals. The 1800−1500
cm−1 signal was not saturated for the benchtop system;
therefore, some or all parts of this region were included when
developing the models (Table 3). Multiplicative scatter
correction (MSC) transformation was applied to the data as
a preprocessing treatment. Calibration model summary
statistics for five quality parameters (glucose, fructose, citric
acid, glutamic acid, and °Brix) are presented in Table 3.
Reference data for titratable acidity and pH were not reliable
for tomato juices from the 2011 growing season and therefore
were not included in calibration model development (Table 1).
Overall, PLSR calibration models generated by tomato juices

from the 2010−2011 seasons yielded higher correlation
coefficients (Rcv = 0.81−0.95) than previously found with
2010 samples only (Rcv = 0.73−0.96, Table 2) and similar
SECV levels. This indicated that by increasing the number and
diversity of the samples, one could allow for the reduction of
impact from irrelevant spectral-variations (noise) in the
calibration model. This capability provided a more informa-
tion-rich data set of reduced dimensionality and eliminated data
noise that resulted in more accurate and reproducible
calibration models.35−37 Both instruments displayed very
similar, and adequate, estimating capacity for all sugar and
acid quality parameters (Rcv = 0.82−0.94 benchtop, 0.81−0.95
portable (Figure 3)), which indicated that the selected principal
components were modeling about 81−95% of the variance
within the samples.27

The use of loadings plots enabled the identification of
portions of the original spectra that were important for
discrimination. Loadings identified which areas of the IR
spectra were more related to sample variation; when they were
particularly large (either below or above zero), they denote
areas of the original spectra that were important for
discrimination. The most relevant spectral region for sugars
was 1200−1000 cm−1, which includes the C−O and C−C

Table 3. Calibration and Validation Performance Statistics for PLS Regression Models Generated for Quality Parameters in
Processing Tomatoes from the 2010−2011 Growing Season on Benchtop (Triple-Bounce ATR) and Cary Portable Systems

analyte technique N range of concn factors SECVa Rcv
b SEPc Rval

d

glucose (g/L) benchtop: 3 bouncee 285 10.0−21.4 8 1.20 0.85 1.47 0.83
portable: Caryg 345 4 1.22 0.85 1.14 0.88

fructose (g/L) benchtop: 3 bouncee 285 11.0−20.6 3 1.19 0.82 1.23 0.80
portable: Caryg 325 4 1.14 0.81 1.21 0.80

citric acid (g/L) benchtop: 3 bouncef 270 1.29−3.86 8 0.21 0.86 0.21 0.85
portable: Caryg 360 8 0.24 0.87 0.24 0.88

glutamic acid (g/L) benchtop: 3 bouncef 270 1.00−3.21 7 0.22 0.84 0.25 0.79
portable: Caryg 330 9 0.18 0.88 0.19 0.86

°Brix benchtop: 3 bounce 300 4.2−6.7 8 0.20 0.94 0.23 0.92
portable: Caryg 370 6 0.21 0.95 0.21 0.96

aSECV: standard error of cross-validation. bRcv: correlation coefficient of cross-validation. cSEP: standard error of prediction. dRval: correlation
coefficient of validation. eSpectral region included was 1800−900 cm−1. fSpectral regions included were 1800−1600 and 1500−900 cm−1. gSpectral
region included was 1500−900 cm−1.
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stretching modes of carbohydrates.38 The most intense peaks
for sugars were 1062 cm−1 on the benchtop system and 1082
cm−1, characteristic of the C−O stretch vibration. The band at
1062 cm−1 is in accordance with results reported by Sivakesava
and Irudayaraj.39 Prominent peaks for citric acid discrimination
included the 1020−1105 cm−1 region for both systems and,
additionally, 1716 cm−1 on the benchtop system, which
reflected the carbonyl stretch (CO) vibration.32 Interestingly,
relevant spectral regions for glutamic acid were in the 1020−
1105 cm−1 region but also included a prominent band at 1405
cm−1 for symmetric stretching of the carboxylic group.40

Discrimination for soluble solids utilized attributes of the
spectral regions of both acids and sugars, relying on prominent
peaks in the 1000−1130 cm−1 region and a small peak at 1406
cm−1.
External Validation Using an Independent Set of

Tomato Juices. External validation of the PLSR models,
obtained with the calibration samples, was performed using the
remaining third of tomato juice samples from 2010 to 2011
growing seasons. Although several authors have reported that
SECV gives a realistic estimate of the error of prediction of
samples not included in the calibration,41−43 this step is
necessary to obtain an independent measurement of the
equation’s accuracy, expressed as SEP, i.e., standard error of
prediction.44 Examination of the validation statistics shown in
Table 3 reveal similar SECV and SEP values for MIR
predictions of all quality parameters examined, indicating that
the application of these MIR models of both systems gave
robust predictions under practical conditions.45 It is a normal
finding that the standard errors obtained by validation were
slightly higher than those of cross-validation.27

The PLS regression models showed good ability in
estimating the sugars, acids, and especially soluble solids in
tomato for both triple-bounce ATR benchtop and Cary 630
portable FT-IR systems judging by the high Rval and low SEP
results (Table 3). Comparatively, a study completed by Schibisz
and others38 obtained similar mid-IR modeling results in
quantifying sugars, citric acid, and soluble solids in tomatoes
using a benchtop system, with reported Rval >0.92 for glucose,
fructose, citric acid, and soluble solids in tomatoes and standard
error of predictions of 0.87 g/L, 1.04 g/L, 0.39 g/L, and
1.84°Brix, respectively. Other works have been reported by
Pedro and Ferreira46 supporting the use of benchtop FT-IR
systems for assessing tomato quality; however, no research has
yet been reported on the use of portable systems. Interestingly,
the Cary 630 unit equipped with a transmission DialPath
accessory provided superior performance in estimating sugars,
acids, and soluble acids in processing tomatoes compared to the
single-bounce ZnSe ATR benchtop and FlexScan hand-held
that utilized a single-bounce diamond ATR, and showed
performance similar to that of the triple-bounce ZnSe ATR
benchtop (Table 3).
In summary, our findings support the use of a portable FTIR

with a transmission sampling accessory for rapid assessment of
quality parameters in processing tomatoes. Novel portable FT-
IR systems may provide the tomato processing industry with a
rapid method to evaluate processing tomatoes with equivalent
levels of reliability and sensitivity as benchtop systems but allow
for more flexibility since the unit can be easily carried and
transferred.

■ AUTHOR INFORMATION

Corresponding Author
*The Ohio State University, 2015 Fyffe Court, Columbus, OH
43210. Phone: 614-292-3339. E-mail: rodriguez-saona.1@osu.
edu.

Funding
This work was supported by a grant from the California League
of Food Processors (CLFP).

Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) FAOSTAT Statistical Database; Food and Agriculture Organ-
ization of the United Nations. http://faostat.fao.org/faostat (accessed
2004).
(2) United States Department of Agriculture. Economic Research
Service: Tomato. http://www.ers.usda.gov/topics/crops/vegetables-
pulses/tomatoes.aspx#processing (accessed Aug 2012).
(3) Anthon, G. E.; LeStrange, M.; Barrett, D. M. Changes in pH,
acids, sugars and other quality parameters during extended vine
holding of ripe processing tomatoes. J. Sci. Food Agric. 2011, 91, 1175−
1181.
(4) Salveit, M. E. Fruit Ripening and Fruit Quality. In Tomatoes;
Heuvelink, E., Ed.; CABI Publishing: The Netherlands, 2005; pp 145−
170p.
(5) Nielsen, S. S. Food Analysis, 2nd ed.; Aspen Publishers:
Gaithersburg, MD, 1998.
(6) Barringer, S. A. Vegetables: Tomato Processing. In Food
Processing: Principles and Applications; Smith, J. S., Hui, Y. H., Eds.;
Blackwell Publishing, Ltd.: Oxford, UK, 2004.
(7) Gould, W. A. Tomato Production, Processing and Technology, 3rd
ed.; CTI Publishers: Baltimore, MD, 1992.
(8) Nichols, M. A. Towards 10 t/ha Brix. Acta Hort. 2006, No. ISHS,
724217−724223.
(9) Draft Guidance for Industry: Acidified Foods, 2010. U.S.
Department of Health and Human Services; Food and Drug
Administration Center for Food Safety and Applied Nutrition.
h t t p : / / w w w . f d a . g o v / F o o d /
GuidanceComplianceRegulatoryInformation/GuidanceDocuments/
AcidifiedandLow-AcidCannedFoods/ucm222618.htm (accessed Jan
2013).
(10) Sapers, G. M.; Douglas, F. W., Jr.; Ziolkowski, M. A.; Miller, R.
L.; Hicks, K. B. Determination of ascorbic acid, dehydroascorbic acid
and ascorbic acid-2-phosphate in infiltrated apple and potato tissue by
high-performance liquid chromatography. J. Chromatogr., A 1990,
503431−503436.
(11) Baldwin, E. A.; Goodner, K.; Plotto, A. Interaction of volatiles,
sugars, and acids on perception of tomato flavor and flavor descriptors.
J. Food Sci. 2008, 73 (6), 294−307.
(12) De Bruyn, J. W.; Garretsen, F.; Kooistra, E. Variation in taste
and chemical composition of the tomato (Lycopersicon Esculentum
Mill.). Eupytica 1971, 20, 214−227.
(13) Stevens, M. A.; Kader, A. A.; Albright-Halton, M.; Algazi, M.
Genotypic variation for flavor and composition in fresh market
tomatoes. J. Am. Soc. Hortic Sci. 1977, 102 (5), 680−689.
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