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Guided microwave spectrometry was evaluated for in-line determination of quality attributes, soluble
solids content, titratable acidity and Bostwick consistency of tomato pastes in continuous processing. The
spectrometer was tested for two processing operations, dilution and evaporation. A total of 34 tomato
paste samples were prepared by blending 9 different tomato pastes together in various proportions with
final Bostwick consistency ranging from 2 to 11 cm. During the processing operation, spectra of 5
samples were obtained when different soluble solids contents were achieved. At the same time, standard
reference methods were used to measure the parameters of interest on the same samples taken from the
processing flow loop. The spectrum was recorded from 136 to 2690 MHz in 2 MHz steps. Partial Least
Square (PLS) was employed to produce prediction models for each quality attribute from the collected
microwave spectra. Cross-validation was performed to validate the calibration models. These models
demonstrated good predictability of the soluble solids content, titratable acidity and Bostwick consis-
tency in both dilution and evaporation conditions, as shown by their high correlation coefficient (r) and
low root mean square error of cross-validation (RMSECV) values. Interval PLS (iPLS) was applied to
optimize the models by selecting the most relevant and non-noisy regions in the spectra. The iPLS
models showed improved accuracy for prediction of all three of the parameters, especially for Bostwick
consistency (r > 0.92 and RMSECV < 0.7 cm). These observations suggest that guided microwave
spectroscopy gave accurate estimation of soluble solids content, titratible acidity and Bostwick consis-
tency of tomato paste. Different processing conditions required varying prediction models for the
changes in the dielectric properties of tomato pastes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The majority of the processing tomatoes grown in California are
thermally processed into concentrated tomato paste. The concen-
trated pastes are usually stored and used as an intermediate
product with water and other ingredients to be reconstituted into
final products, such as ketchups and sauces. Since tomato paste is
themain ingredient in the final products, maintaining the quality of
the paste is crucial for the tomato processing industry. Factors like
the cultivar of the tomato and the processing conditions introduce
great variation in the quality of the paste (Anthon, Diaz, & Barrett,
2008). These variations pose difficulties in achieving a consistent
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paste quality during production. As a quality control routine, pastes
are sampled from each production batch and a range of quality
factors are tested; these include color, soluble solids content, pH,
acidity and consistency. Because the classification of tomato prod-
ucts, e.g., paste or puree, is done according to its soluble solids
content, it is a key characteristic of tomato products. During
evaporation, the real-time value of the soluble solids helps to
determine the end point of the processing. In addition, the flavor of
tomato paste is closely associated with the soluble solids content
and titratable acidity.

Among all factors, consistency is a major quality component of
tomato paste, sauce and ketchup, determining the rheological
properties of the intermediate and final products. Consistency de-
scribes the flow property of non-Newtonian fluids with suspended
particles and dissolved long chain molecules (Barrett, Garcia, &
Wayne, 1998). The consistency of the paste is typically evaluated
using a Bostwick consistometer. This empirical method is widely
used in the tomato industry, and USDA has established quality
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standards for tomato products based on the consistency as
measured by the Bostwick consistometer (USDA, 1992). The Bost-
wick consistency of tomato paste decreases exponentially with the
increase in concentration, which imposes a limit on the validity of
this method on tomato concentrates with more than 15% total
solids (Rao, Bourne, & Cooley, 1981; Tanglertpaibul & Rao, 1987).
Moreover, the consistency of tomato paste is sensitive to temper-
ature (Tehrani & Ghandi, 2007). As a result, the Bostwick consis-
tency measurement is usually performed on a 12 �Brix dilution of
tomato concentrate at 20 �C. The sample preparation and temper-
ature requirement makes it impossible to obtain real-time or even
near real-time data using the Bostwick consistency method.

An in-line process measurement of tomato paste properties,
especially the consistency, is very valuable for improving the
quality of products and minimizing production cost. Infrared
spectroscopy has been used as a rapid alternative to assess the
quality of tomatoes, such as total solids, soluble solids, titratable
acidity, pH, levels of sugars and acids (�Scibisz et al., 2011; Slaughter,
Barrett, & Boersig, 1996;Wilkerson et al., 2013). The application has
been extended to measurement of properties of tomato concen-
trate and juice, including total solids, soluble solids, sugar, acid,
protein and carotenoids (Goula & Adamopoulos, 2003; Pedro &
Ferreira, 2005). In-line consistency prediction of tomato products
has been studied using a variety of different approaches, most of
which are based on measurement of rheological properties, e.g.,
differential pressure measurement (Barringer, Azam, Heskitt, &
Sastry, 1998), vibrational viscometer (Cullen, Duffy, & O’Donnell,
2001), ultrasonics (Dogan, McCarthy, & Powell, 2002; Dogan,
McCarthy, & Powell, 2003) and Flow Magnetic Resonance Imaging
(McCarthy & McCarthy, 2009). A correlation between optical den-
sity and Bostwick consistency was found in tomato products using
in-line absorption photometry (Haley & Smith, 2003). However, no
method has been reported to simultaneously measure both the
chemical properties and the rheological property, i.e., consistency,
of tomato products.

Singh, Bhamidipati, Singh, Smith, and Nelson (1996) evaluated
the performance of several in-line sensors for prediction of soluble
solids and moisture of fruit juice. Guided Microwave (GM) spec-
troscopy gave good results for soluble solids and moisture predic-
tion. GM spectrometer applies multiple frequencies in the lower
portion of the microwave band to the sample contained in the
chamber body and measures the amplitude of microwave signal
transmitted across the sample (Liang, Anantheswaran, Bradley, &
Long, 2002). The interaction between molecules and microwaves
cause molecules to rotate and align with the electromagnetic field.
The polarization and depolarization of molecules reduce the wave
velocity across the chamber, and the dielectric constant is used to
describe this effect. The energy loss due to the friction of orienting
molecules causes a reduction in the magnitude of the wave.
Dielectric loss factor quantifies the efficiency of the energy loss
(Wellock & Walmsley, 2004). The signal amplitude is a function of
the change of dielectric constant and dielectric loss factor of the
sample (Singh et al., 1996). The ability of microwaves to penetrate
thick material allows GM spectroscopy to analyze the bulk prop-
erties of a sample instead of a surface measurement.

The objectives of this study were to evaluate guided microwave
spectroscopy for in-line measurement of tomato paste properties,
including soluble solids content, titratable acidity and Bostwick
consistency, and to develop prediction models for tomato paste
processing based on the microwave spectra by multivariate cali-
bration. In tomato paste production, tomatoes are thermally pro-
cessed and concentrated under vacuum by evaporation.
Afterwards, the evaporated products are processed into final
products by dilution and mixing with additional ingredients. These
two steps are key operations in the manufacture of tomato
products, and they contribute to the quality of the final products.
Therefore, two processing operations, dilution and evaporation,
were chosen to assess the performance of the guided microwave
spectrometer as an in-line sensor.

2. Material and methods

2.1. Tomato paste material

Nine different tomato paste samples, with soluble solids content
ranging from 24 to 30 �Brix and Bostwick consistency ranging from
2 to 11 cm, were obtained fromH. J. Heinz Co. (Los Banos, CA). These
samples were from commercial batches produced on different days
within a three-month period, representing a wide span of variation
in the acidity, consistency and other characteristics of the tomato
paste. These 9 samples were blended together in various pro-
portions and constituents to create another 25 new pastes. The new
samples were formulated so that the consistency values of all 34
samples were distributed in the range between 2 and 11 cm with
intervals of 0.2e0.3 cm.

2.2. Guided Microwave (GM) spectrometry

The GM spectroscopy instrument used in this study was an e
scan In-line Food Analyzer (Thermo Fisher Scientific, Minneapolis,
MN). The spectrometer has a bandwidth of 31.25MHz to 4 GHz. The
sensor body is composed of a transmitter and a receiver separated
by two parallel plates, which define a rectangular section with a
cross-section area of 45.72 mm (separation of two
plates)� 38.86mm (distance between probes), acts as awaveguide.
The volume of the waveguide is 300 mL. The waveguide design
functions to suppress microwave power at frequencies whose
corresponding wavelength cannot fit into the chamber. A wave-
guide can only transmit microwaves with a wavelength shorter
than twice the distance between the two parallel plates. Cutoff
frequency is defined as the frequency, below which the trans-
mission will not occur. Besides the dimensions of the waveguide,
the cutoff frequency is affected by the dielectric constant of the
measured sample. When a sample flows through the waveguide,
microwaves are transmitted through the sample to the receiver,
and the response is recorded in the form of a spectrum. Spectra
were collected over the frequency range from 136 to 2690 MHz in
2 MHz steps.

2.3. Experimental setup

2.3.1. Dilution
The flow loop system consisted of a feeding tank, positive

displacement pump, GM spectrometer, sampling valve, and addi-
tional pipes and fittings were used to connect all the pieces
together. Samples were pumped from the feeding tank to the GM
spectrometer and then returned back to the tank. The dilution
study was conducted at room temperature (21 � 2 �C). Due to the
limitation of the pump used in the flow loop, the original tomato
paste with soluble solids content over 24 �Brix could not be tested
under flow conditions. Therefore, for pastes above 24 �Brix, each
tomato concentrate was loaded into the GM spectrometer sample
chamber from the top and tested under static conditions. After that,
distilled water was added to the paste in the feeding tank and
continuous mixing was applied. The paste was diluted at steps of
about 5 �Brix until it reached the target level of 5 �Brix. When
desired level was achieved, GM spectroscopy measurements were
performed on the diluted samples. Six spectra were acquired for
each sample during the measurement. At the same time, samples
were collected from the sampling valve located at the downstream
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end of the GM spectrometer chamber for reference analysis. Five
samples were generated from each paste. For example, a 25 �Brix
paste was diluted to approximately 20 �Brix, 15 �Brix, 10 �Brix, and
5 �Brix, successively. The original paste and the four dilutions were
tested using GM spectrometer. Therefore, a total of five samples
were collected from the dilution study of each paste sample.

2.3.2. Evaporation
A semi-batch forced circulation evaporator was used to evapo-

rate the final product from the dilution operation. Sample was fed
into the evaporator by a gear pump. The evaporator is mainly
composed of a shell and tube heat exchanger, static mixer, back
pressure valve, vacuum separator, vacuum pump and a circulation
pump. The product from the vacuum separator was circulated back
to the heat exchanger unless it was drawn off from the outlet
located between the circulation pump and heat exchanger. The GM
spectrometer sample chamber was installed upstream of the heat
exchanger and downstream of the circulation pump. The evapo-
ratorwas operated at a reduced pressure of 10 KPa and temperature
was maintained at 46 � 3 �C. About 20 L of juice at around 5 �Brix
from the dilution operation was fed to the evaporator and evapo-
rated gradually to 25 �Brix. GM spectroscopy measurements were
performed on the diluted juice and on the product of evaporation
when approximately 5 �Brix increments in the soluble solids con-
tent were achieved. Five samples were generated from the evapo-
ration of each juice. For example, for a 5 �Brix juice, the five samples
were at about 5 �Brix, 10 �Brix, 15 �Brix, 20 �Brix and 25 �Brix. Six
spectra were acquired for each sample. No product was discharged
except for sampling. Samples were collected from the product
outlet for reference analysis after the spectra acquisition.

2.4. Chemical and physical analysis

Collected samples were allowed to equilibrate to room tem-
perature before they were tested for their chemical and physical
properties, including soluble solids content, titratable acidity and
Bostwick consistency.

Soluble solids content (SSC) was determined using a bench-top
temperature compensating refractometer (RFM 730, Bellingham
and Stanley, UK). The titratable acidity (TA) of each sample was
tested according to AOAC method 942.15 (AOAC, 2002). Two grams
of sample was diluted in 50 mL distilled water and well mixed. The
dilutionwas titratedwith 0.1MNaOH to an end point of pH 8.2, and
the TA value was expressed as the equivalent percentage of citric
acid.

The consistency of samples was measured using a Bostwick
consistometer (CSC Scientific company, Inc. Fairfax, VA). In industry
standard practice, a 12 �Brix dilution of paste is used in evaluation
of the Bostwick consistency of the paste. The 5 samples from the
dilution series of the same paste would have the same Bostwick
consistency. Therefore, the measurement was performed only on
the 34 original tomato paste samples in the dilution operation and
the 34 final products from the evaporation operation. Each sample
was diluted to 12 �Brix by adding distilled water, and equilibrated
to 20 � 1 �C. The distance the 12 �Brix dilution traveled in the
Bostwick consistomer after 30 s was read to the nearest 0.1 cm and
recorded as the consistency in cm.

All the measurements were performed in duplicate and the
average values were reported.

2.5. Multivariate analysis

Spectra pretreatment and multivariate analysis were performed
using Matlab 2010a (The Mathworks, Natick, MA) and PLS toolbox
6.5.2 (Eigenvector Research Inc., Wenatchee, WA).
2.5.1. Spectra pretreatment
The heterogeneity of samples, occurrence of air bubbles, and

sudden mechanical motion can affect acquired spectra. For this
reason, a series of 6 spectra were recorded for each sample and the
most similar 4 spectra were averaged. Principle Component Anal-
ysis (PCA) is capable of identifying similarities and outliers in
multivariate data (Jolliffe, 2002). A PCA approach was employed to
detect the abnormal spectra. The 6 spectra with 1278 frequency
variables of each sample were treated as 6 stand alone observations
and analyzed using PCA. T2 scores of each spectrumwere calculated
based on the first two principle components. The hotelling T2

measures the variation of the variables within the PCA model. The
two spectra with the highest hotelling T2 scores were excluded and
the average of the remaining four spectra was used as the spectrum
for further analysis.

2.5.2. Partial Least Square Regression
Partial Least Square (PLS) analysis was used to analyze the

spectra data of the paste samples. Similar to PCA, PLS handles
complex multivariate data like spectra, and it has been applied in
the analysis of Infrared, UV, and NMR spectroscopy data as well as
developing quantitative predictive models based on references to
measure the properties of interest in a sample. In PLS, the regres-
sion is based on latent variables, which were constructed to capture
maximal covariance between spectral matrix X and the response
vector Y (Nicolai et al., 2007). The logarithm to the base 10 of the
spectra was used in the analysis. The logarithmic spectrum of each
sample was then auto-scaled by subtracting the mean of the
spectrum, and the subtracted spectrum was divided by the stan-
dard deviation of the spectrum. PLS was applied to establish the
relationship between the pretreated spectral data X and the
measured quality parameter of interest Y. For SSC and TA calibration
models, a 5 fold venetian blinds cross-validation was performed to
validate the calibration models. The whole dataset was divided into
5 subsets, and 1 subset was used to validate the calibration model
built based on the other 4 subsets. The cross-validation was
repeated until all subgroups have been used once as the validation
data. The Bostwick consistency models were validated using leave-
one-out cross-validation approach. One sample was used as the
validation data, and the remaining samples were used to build the
calibration model. The validation process was repeated until all
samples have been used once as the validation data.

2.5.3. Interval Partial Least Square
Interval Partial Least Square (iPLS) is a variable selection tech-

nique searching for important spectral regions and removing in-
terferences from other regions (Norgaard et al., 2000). The iPLS
algorithm develops local PLS models based on spectral subintervals
of equal width. The prediction performance of the local PLS models
and the full-spectrum PLS model is compared in terms of the root
mean square error of cross-validation (RMSECV) defined as:

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � byiÞ2
vuut

where n is the number of the cross-validated samples, yi is the
reference value from lab measurement of the cross-validated
sample i, and byi is the predicted value of the cross-validated sam-
ple i. The combination of intervals that gives the lowest RMSECV is
selected. Therefore, a simpler model with better performance can
be obtained by using only the variables selected by iPLS (Pereira
et al., 2008). The selection of interval was performed using the
iPLS algorithm in the PLS toolbox 6.5.2 (Eigenvector Research Inc.,
Wenatchee, WA). The iPLS was run in forward mode on the



Fig. 2. GM spectra of 3 tomato pastes with different Bostwick consistency. Signal
amplitude is the ratio of the input signal to the transmitted signal. From the bottom to
the top, Bostwick: 3.3 cm, 7.3 cm, 9.7 cm; soluble solids content: 25.5 �Brix, 30.2 �Brix,
30.2 �Brix; Titratable acidity: 1.30%, 1.65% and 1.34%.
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logarithm auto-scaled spectra with an interval size of 63 variables.
As a result, the whole spectrum with 1278 variables was divided
into 20 subintervals of equal width. Cross-validation of the local PLS
models was conducted as described in 2.5.2 to validate and evaluate
the model performance.

3. Results and discussion

3.1. Spectral characteristics

Fig. 1 shows an example of GM spectra of a paste sample diluted
to different soluble solids content. All spectra began with an initial
sharp rise in the signal amplitude as a function of frequency. The
signal amplitude leveled off around 650 MHz and decayed gradu-
ally after that. The region where the initial increase occurred is
referred to as the cutoff region in the GM spectra, and the passband
region starts from the point where the signal levels off. The shape
and the signal amplitude of the spectrum are determined by three
dielectric properties of the sample, dielectric constant, electrical
conductivity and the molecular relaxation time (Jean, 2006). The
cutoff frequency approximates the frequency at which the spec-
trum started to level (Liang et al., 2002). It is dependent on the
dielectric constant of the sample, which is a strong function of the
moisture content. The amplitude of the passband region is
contingent upon the electrical conductivity of the sample, and can
be estimated from the slope of the cutoff. The molecular relaxation
time determines the slope of the signal decay after the point signal
starts to level off (Singh et al., 1996). The changes in the concen-
tration of the chemical composition result in changes in the
dielectric properties of the sample, leading to changes in the
spectra.

For example, dilution of tomato paste caused an increase in the
moisture content; meanwhile, a decrease occurred in the soluble
solids content and the titratable acidity. As illustrated in Fig. 1, the
spectrum gradually shifted to the left with decreasing soluble solids
content. At the same time, signal amplitude of the passband region
decreased. These changes were the joint effects of the changes of
the moisture content, soluble solids content and titratable acidity.

Fig. 2 shows the spectra of three tomato pastes with different
Bostwick consistency in the dilution study. These three spectra
demonstrated differences in the amplitude and the slope of the
passband region. Besides the consistency, the samples varied in
constituent components, such as soluble solids content and titrat-
able acidity, which may contribute to the divergence in the spectral
features. Because multiple properties of the sample may be related
to one dielectric property of the sample, consequently leading to
Fig. 1. GM spectra of a paste sample diluted to different soluble solids content. Signal
amplitude is the ratio of the input signal to the transmitted signal. From the bottom to
the top, soluble solids content: 27.3 �Brix, 23.9 �Brix, 15.5 �Brix, 12.6 �Brix and
6.6 �Brix; Titratable acidity: 1.65%, 1.45%, 0.98%, 0.81% and 0.44%.
change in the spectra, it is challenging to correlate a specific char-
acteristic or component of the samples with the spectra. Unlike
other spectroscopic techniques, no clearly defined peaks are asso-
ciated with chemical composition of a sample in a GM spectrum.
Multivariate calibration is usually needed to correlate the spectra to
the chemical composition or properties of a sample (Wellock &
Walmsley, 2004).
3.2. PLS regression

3.2.1. Dilution
PLSwas performed on the spectrawith 1278 frequency variables

to explore the correlation between the properties of interest of the
tomato paste samples and their GM spectra. Sample outliers were
excluded from the model based on their student t residual and
leverage. For the dilution study, tomato paste samples used for PLS
regression had SSC values ranging from 5.2 to 30.2 �Brix, TA values
ranging from 0.23 to 1.86%, and consistency ranging from 1.8 to
9.9 cm. PLS calibration models were developed using the optimum
number of latent variables based on cross-validation. The criterion
is to select the minimum number of latent variables that minimize
the RMSECV.

A 4-factor PLS model was built for SSC, capturing 95% of the
variance in SSC. The PLS model predicted SSC values were plotted
against the SSC from lab measurements (Fig. 3a). The model
demonstrated better performance in the range of 5e18 �Brix than
in higher SSC region. Broad scatter of data points were observed
along the diagonal line above 25 �Brix. A PLS model for TA was
developed on the first 4 latent variables, accounting for 93% of the
variance in TA. Similarly, the TA prediction model had higher ac-
curacy in the low acidity range, and the difference between the
predicted and measured TA became evident when the TA was
greater than 1% (Fig. 3b). In the dilution study, the tomato paste
samples with higher SSC (>25 �Brix) were analyzed under static
conditions due to their high viscosity, while measurement of the
diluted pastes were conducted in the process of continuous flow
and mixing. The agitation and continuous flow facilitated better
mixing of the sample, which made the material within the spec-
trometer chamber more uniform, giving more representative re-
sults. For Bostwick consistency, a 5-factor model was chosen from
cross-validation. Although 93% of the variance in the consistency
can be explained by this model, the accuracy of the consistency
model was lower than the SSC and TA models (Fig. 3c).

The performance parameters of the cross-validated prediction
models were summarized in Table 1. RMSEC (root mean square
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error of calibration) measures the difference between the actual
measured value and predicted value for the calibration samples and
has the same unit as themeasured parameter. RMSECV is calculated
from the cross-validated samples. Relative RMSECV is calculated as
the ratio of RMSECV to the measured mean value, describing the
prediction error relative to the measured parameter. Both the SSC
and TA models had a correlation coefficient of cross-validation (rcv)
higher than 0.94. The RMSECV values of these two models were
Table 1
Performance of PLS models for quality parameters.

Condition Parameter Na RMSECb RMSECVc Relative
RMSECVd

rcv
e

Dilution SSC (�Brix) 167 1.8 2.1 0.135 0.960
TA (%) 167 0.11 0.13 0.153 0.947
Bostwick
consistency (cm)

30 0.6 1.0 0.174 0.880

Evaporation SSC (�Brix) 170 1.1 1.3 0.084 0.976
TA (%) 170 0.08 0.10 0.133 0.958
Bostwick
consistency (cm)

30 0.2 1.1 0.193 0.839

a N: number of samples in the model.
b RMSEC: root mean square error of calibration.
c RMSECV: root mean square error of cross validation.
d Relative RMSECV: relative root mean square error of cross validation (RMSECV/

mean).
e rcv: correlation coefficient of cross validation. RMSEC and RMSECV are in units of

the predicted parameters.
similar to their RMSEC, indicating the performance of the models
did not decay on the cross-validation test data. The lower rcv and
higher relative RMSECV of the consistency model suggested that
the performance of the model was inferior to that of SSC and TA.

3.2.2. Evaporation
In the evaporation study, collected samples were in the range of

5.5e29.7 �Brix for SSC, 0.24e1.628% for TA and 2.25e9.4 cm for
Bostwick consistency. A 4-factor PLS model captured 97% of the
variance in SSC. For TA, the prediction model base on 4 latent
variables accounted for 94% of the variance. As shown in Fig. 4,
these models outperformed their counterparts in the dilution
study. The predicted values were better correlated to the measured
reference values, especially in the high SSC and TA range, than in
the dilution study models. The higher accuracy of the SSC and TA
model in the evaporation study was confirmed by their lower
RMSECV and relative RMSECV (Table 1). The circulation pump and
static mixer in the evaporator allowed more uniform flow and
better mixing of tomato concentrate than the stirrer in the feeding
tank used in the dilution study, and subsequently introduced less
variation in the sample within the GM spectrometer chamber
during spectrum acquisition and sampling for lab measurement.

The Bostwick consistency model was built on 5 latent variables,
which explained 99% of the variance in the consistency. The per-
formance of the model is illustrated in Fig. 4c, the data points
scattered loosely along the diagonal line, where the predicted value
equals to the measured value, but the linear relationship between
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the predicted consistency and lab measured consistency was
apparent. The RMSECV of 1.1 cm in the consistency model is rela-
tively high considering the range of consistency in the model is
around 7 cm. In addition, the relative RMSECV of the consistency
model is 0.19, indicating the prediction error (RMSECV) is almost
20% of the mean consistency. However, the rcv (0.839) indicated
that the GM spectrum and the Bostwick consistency were highly
Fig. 5. iPLS result for soluble solids content in dilution study. The columns indicate the RMSE
full-spectrum model (dashed line). The number at the bottom of each column denotes the
mean spectrum is overlaid on the plot.
correlated. The improvement in the mixing in the evaporator did
not introduce any enhancement in the performance of the consis-
tency model.

Consistency, as an important rheological property of tomato
product, is usually correlated with results from a rheology based
method, such as viscosity. However, the consistency of tomato
paste is affected by its composition. The water insoluble solids are
CV for the model with the intervals added, which is compared with the RMSECV of the
optimal number of latent variables in the model base the interval. A logarithm scaled



Table 2
iPLS results for quality parameters.

Condition Parameter Interval selected
(variable number)

RMSECVa rcv
b

Dilution SSC (�Brix) 127e378, 1009e1134 1.6 0.976
TA (%) 127e378, 883e1071 0.11 0.969
Bostwick
consistency (cm)

253e378, 505e567 0.7 0.945

Evaporation SSC (�Brix) 253e504, 694e756,
1072e1197

1.2 0.980

TA (%) 505e630 0.09 0.965
Bostwick
consistency (cm)

127e189, 505e630,
1135e1260

0.8 0.929

a RMSECV: root mean square error of cross validation.
b rcv: correlation coefficient of cross validation. RMSECV values are in units of the

predicted parameters.
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considered to be the greatest contributor to the consistency of to-
mato products. The insoluble solids in tomato products are
composed of intact and broken cells, cell fragments, and long chain
polymers of lignin, cellulose, hemicellulose, and water-insoluble
pectic materials (Barrett et al., 1998). Both the insoluble solids
content and the size distribution and shape of the insoluble solids
have effect on the consistency of tomato paste (Hayes, Smith, &
Morris, 1998). These insoluble solids are suspended and highly
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Fig. 6. iPLS optimized model predicted value versus reference value of (a) soluble so
hydrated (Barrett et al., 1998), thus interacting with water mole-
cules and influencing the mobility of water. As a result, the
dielectric behavior of the water varies as a function of insoluble
solids and the amplitude and shape of the GM spectrum change
accordingly. On the other hand, relaxation time is related to the
viscosity of a liquid and the relationship between them can be
described as a linear function for idealized sphere molecules (Tang,
2005). The relaxation time of the sample affects the amplitude and
slope of the passband region of the GM spectrum. Therefore, GM
spectrum contains information for measurement of the rheological
properties of tomato pastes.
3.3. iPLS variable selection

Although good prediction models for SSC and TA were obtained
from full-spectrum PLS regression, the performance of the Bost-
wick consistency model was not satisfactory. iPLS was used to
improve the model performance by removing noisy and irrelevant
intervals in the spectrum. Moreover, iPLS selects the most inter-
esting and relevant part of the spectrum, helping in spectroscopic
interpretation (Pereira et al., 2008). It is advised to experiment
using a different number of intervals when doing iPLS. If the
number of intervals is too low, the interval may be too broad so that
small signature features of the spectrum cannot be seen by the
0.5 1 1.50.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Measured TA (%)

Pr
ed

ic
te

d 
TA

 (%
)

b

lids content, (b) titratable acidity and (c) Bostwick consistency in dilution study.



L. Zhang et al. / Food Control 40 (2014) 214e223 221
variable selection algorithm. If the number of the intervals is too
large, iPLS may not be able to catch all the correlations between the
neighboring variables in the spectrum (Andersen & Bro, 2010). An
interval size of 63 variables was chosen based on trials with
different interval sizes on all data acquired.

3.3.1. Dilution
Fig. 5 illustrates the iPLS variable selection result for SSC in the

dilution study. All columns had the same window size of 63 vari-
ables, and the height of each column represented the RMSECV
value obtained from a local model using the corresponding interval.
The combination of intervals that gave the lowest RMSECV was
selected to develop a model with reduced number of variables. For
SSC, variables 127e378 and 1009e1134 were selected, shown as
green columns (in the web version) in Fig. 5. The selected variables
corresponded to the frequency range of 388e890 MHz and 2152e
2402 MHz. Removing noisy or irrelevant intervals in the spectrum
helped to improve the performance of the SSC prediction model as
proven by the new model’s lower RMSECV and higher r values
(Table 2), compared to those of the full PLS model (Table 1). The
optimized model (Fig. 6a) alleviated the problem of the relatively
high error of prediction in the high SSC range seen in the full model
(Fig. 3a). For TA, a slightly different set of intervals were selected,
frequency in the range of 388e890 MHz and 1900e2276 MHz.
Similar to the new model of SSC, the TA model with optimized
number of intervals showed better correlation between the lab
measured TA and predicted TA along with a lower error, especially
in the high TA range (Fig. 6b). Themost notable improvement in the
Fig. 7. iPLS optimized model predicted value versus reference value of (a) soluble solid
performance was observed in the optimized model of Bostwick
consistency, which had considerably lower RMSECV and higher r
(Table 2) than the full model (Table 1). The optimized model for
consistency was based on the frequency range, 640e890 MHz and
1144e1268 MHz.

The selected intervals for SSC, TA and Bostwick consistency
shared some common regions (Table 2). The variables 127e378,
corresponding to frequency 388e890 MHz, were both included in
the optimized model of SSC and TA. The frequency range included
part of the cutoff slope and the beginning of the passband region
(Fig. 5). Since this region is usually used to calculate the electrical
conductivity and contains the information on dielectric constant,
the changes in dielectric constant and conductivity of diluted to-
mato paste may associate with variation in SSC and TA. The other
selected interval for SSC (2152e2402 MHz) and TA (1900e
2276MHz) are located towards the end of the passband region. The
intervals selected for Bostwick consistency prediction contain a
region close to the initial amplitude peak (640e890 MHz) and
another frequency range in the far passband region (1144e
1268 MHz). As mentioned in 3.2.2, relaxation time is a function of
viscosity, which is a correlate of the Bostwick consistency of tomato
paste. The selected regions for consistency can be used to calculate
the slope of the signal rolloff after the initial amplitude peak in the
passband region, which is determined by the relaxation time. The
iPLS result for consistency demonstrated the theoretical relation-
ship between relaxation time and viscosity. Furthermore, close to
the peak region 640e890 MHz may contain information related
both to the dielectric constant (coupled with the cutoff frequency)
s content, (b) titratable acidity and (c) Bostwick consistency in evaporation study.
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and the conductivity (correlated with the slope of cutoff region).
Thus, Bostwick consistency is affected by other factors, including
water content and chemical constituents, which may change the
conductivity of tomato paste.

3.3.2. Evaporation
For all three parameters, models based on selected intervals

presented better prediction ability than their full models, especially
the consistency model (Fig. 7). Different sets of intervals were
selected by iPLS for each parameter in the evaporation study,
comparing with the results from the dilution study (Table 2).
Dielectric properties are temperature and density dependent
(Ryynänen, 1995). The evaporation study was conducted at an
elevated temperature under reduced pressure, both of which
altered the dielectric properties of the tomato paste sample. The
amplitude and shape of the GM spectra changed as a result, leading
to shifts in the frequency ranges related to the parameters of
interest.

In both the evaporation study and dilution study, different re-
gions of the spectrum were selected by iPLS for optimization of
models for the three parameters. Correlations may exist between
SSC, TA and consistency of the tomato paste samples. It is known
that there is a linear relationship between the soluble solids con-
tent of tomato paste and the logarithm of Bostwick consistency
(Marsh, Buhlert, & Leonard, 1980). The SSC of these concentrated
tomato pastes used in the dilution study varied within the range of
20e30 �Brix. The iPLS variable selection results indicated that the
ability of GM spectroscopy to quantify the Bostwick consistency is
not based on the correlation between the spectra and SSC even
though considerable variation in the SSC existed in the samples.

4. Conclusion

The chemical constituents of food products affect their dielectric
properties, which enables GM spectroscopy technology to measure
the properties of tomato pastes. This study confirmed the feasibility
of the GM spectroscopy for determination of SSC, TA and Bostwick
consistency of tomato pastes. Experiments were conducted under
two processing operations, dilution and evaporation, with different
temperature and pressure. A multivariate calibration method, PLS,
was used to correlate the GM spectrawith the properties of interest
and develop prediction models for the tomato paste quality pa-
rameters. The PLS model for quantification of SSC and TA provided
fairly accurate prediction and gave r of at least 0.95 between the GM
spectroscopy predicted and the lab measured values in both oper-
ation conditions. By comparison, the Bostwick consistency model
had lower prediction accuracy. However, an r value of above 0.8
validated the correlation between the predicted consistency based
on GM spectra and the measured value. The performance of the
prediction models for all three parameters was improved by
adopting a local regression modeling approach, iPLS. The iPLS
method selected the most relevant and least noisy intervals in the
spectrum for an optimized regression model. The Bostwick con-
sistency models benefited the most from the variable selection as
shown by a significant increase in the r to above 0.92 and decrease
in the prediction error. Different spectral intervals were selected for
the three parameters, implying the chemical information related to
each of the properties is embedded in different region of the
spectra of tomato paste. For all quality parameters, the variable
selection results were distinct between the dilution study and the
evaporation study. The dielectric properties of tomato pastes
changed with temperature and pressure, leading to changes in the
GM spectra. These changes made it impractical to use the same set
of GM spectra base prediction models for processing conditions
with different temperature and pressure. In summary, the GM
spectroscopy technique proved useful for in-line measurement of
tomato paste properties, SSC, TA and Bostwick consistency under
different operation conditions. It provided a rapid and effective
alternative to the standard methods used in tomato processing
industry, especially for consistency determination.
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